
Samvera - Keeping Up 
To Date



Who is this 
clown?

Rob Kaufman
@orangewolf

rob@notch8.com
https://www.notch8.com

Founder of Notch8 - An App 
Development Consultancy since 2007

This Deck
http://bit.ly/n8sc2018-2

Insert Self Deprecation Slide Here

mailto:rob@notch8.com


When Should 
We Upgrade



How Often Considerations



Estimating Upgrades
Ruby Version

Rails Version

Gemfile Updates

Test Versions

Test Coverage

Brakeman Results

App Size Comparison

Develop a Plan



Exercise - Tools
Brakeman

Bundler Audit

RetireJS

rails stats

Brakeman
gem install brakeman
brakeman -o brakeman.html -f html

Bundler- Audit
In Gemfile copy the following line:
gem ‘bundler-audit’, git: 
‘https://github.com/notch8/bundler-audit ’, 
groups: [:development, :test]

On command line
git checkout -b maintenance
bundle 
bundle-audit check --update 
-o=tmp/audit.html

RetireJS
npm install retire
retire -j app -n node_modules --outputformat 
text --outputpath results.txt

Rails Stats
rails stats

https://github.com/notch8/bundler-audit


Server Side - The Level Below
OSSEC

Lynis

Package manager upgrades



Useful Tools Quiz

http://bit.ly/sc2018quiz1



Timing



Halt The World
Stop all feature dev and work only on the upgrade

Works well if code deadlines are sparse or malleable, but is hard on the business

Can bring folks together with a spring cleaning like feel

Doesn’t work on active projects



Little Pieces
For larger upgrades, doing smaller pieces at a time can be useful.

Upgrading to levels where deprications appear then fixing those as dev continues 
can work as long as the rest of the team doesn’t add more “old style” code

Can take forever to complete, leaving management feeling like it will never finish

Tends to get interrupted by shifting priorities 



Iterative Chunks
Do one of the steps in the upgrade dance, then commit that and make it main line 
code

Each step requires new code to either be tracked and upgraded as it happens or a 
reconciliation step at the end right before merge. 

Basically smaller lock periods than the halt the world approach but without the 
constant backtracking of each piece



Timing Discussion
Timing

- Halt the World
- Little Pieces
- Iterative Chunks



Approaches for upgrading

Approaches
The upgrade dance!

The Step By Step - Upgrade the 
gem file walk through each step

The Two Step - Upgrade the specs 
first, then upgrade the gems

The ReRe - Create a clean app and 
port code over

The Flail and Fail - Things not to do



The Step By Step
Bump major dep versions in the Gemfile

Like Rails version, Hyrax version

bundle update just those gems

Look at dependency issues and resolve them, adding gems to your update list until 
you get a build

Look at 
https://guides.rubyonrails.org/upgrading_ruby_on_rails.html#the-update-task

https://guides.rubyonrails.org/upgrading_ruby_on_rails.html#the-update-task


The Step By Step
Run rails app:update

Look at release notes from Hyrax

Follow those steps, noting which ones have to be done again on production data 
when the app is deployed

Run full QA plan… expect issues as there is no test coverage

It can be helpful to get the model layer working first, then go route by route to fix 
controllers and views*



Exercise - Upgrade a Rails App
Our goal here is to go through the gem process. We’ll do a couple together and 
then do some in groups.



The Two Step
A lot of the same steps as above, though because you have tests you can have a 
lot more confidence in the process

Upgrade the specs first, then proceed with upgrading the application

This is the best way to smallish version jumps



Generate a clean app with the latest framework

Copy the specs / spec dependencies over and get them running or upgraded (as in 
the Two Step)

Copy and update any initializers / config files

Copy and update just the models over and get all model specs passing

Copy any code from lib or other non-standard places

Copy and update assets over, check JS for needed updates

Copy and update controllers and views over one route at a time, modifying as 
needed

The ReRe



ReRe vs Two Step Exercise
What are some factors between upgrade paths?

Which should we use in these scenarios and why?



The Flail and 
Fail



The Flail and Fail
Focus, focus, focus

Do the smallest thing you can at a time

Bundle update without arguments is not your friend

Don’t decide to just rewrite the whole app in node/crystal/rust

Minimize refactoring and feature changes during upgrades (see focus above)



Success Metrics - Justify Upgrades
What does success look like?

Code Churn

Total Cost of Ownership

Technical Debt Paydown

Cross Training



Timing & Approach Quiz

http://bit.ly/sc2018q2



And now a word 
from our 
sponsor



Questions?

Rob Kaufman
@orangewolf

rob@notch8.com
https://www.notch8.com

This Deck
http://bit.ly/n8sc2018-2

mailto:rob@notch8.com
https://www.notch8.com


7) Keeping your Samvera application up to date (NOTE: 

Changed to morning)

Description: This workshop will discuss upgrade strategies, 
workflows, best practices and common pitfalls. Some familiarity 
with either Rails or Samvera applications is recommended. We'll go 
in depth on how we evaluate an application for upgrade, different 
strategies we recommend and when to use them, and walk through 
a couple scenarios in depth.

TODO:

Create sample “behind” rails app with bundler audit, retirejs and 
brakeman

Create quiz for brakeman/bundler audit

Create two step vs rere exercise

Create quiz for timing and approaches?

- When To Upgrade

- How do you measure an upgrade
- Approaches for upgrading

- The Step - Upgrade the gem file walk 
through each step

- The Two Step - Upgrade the specs first, then 
upgrade the gems

- The ReRe - Create a clean app and port code 
over

- The Flail and Fail - Things not to do
- Timing

- Halt the World
- Little Pieces
- Iterative Chunks

- Success Metrics


