
New Directions for Northwestern
Taking a Cloud-First Approach

Michael B. Klein
Samvera Virtual Connect 2019
April 24, 2019



2

Fedora

Solr

Zookeeper

Arch (Hyrax)



Learning As We Go

3



Services, Not Servers
• Database RDS Postgres
• Storage S3
• Transcoding Elastic Transcoder
• Caching ElastiCache Redis
• Search Index ElasticSearch
• Streaming CloudFront
• Monitoring CloudWatch Alarms
• Logging CloudWatch Logs
• Messaging SQS/SNS/SES

4



Services, Not Servers
• IIIF as a serverless application (Lambda)

- Blazingly fast
- No servers or environment to maintain; only code
- Scales immediately and intelligently

5



Services, Not Servers
• ElasticSearch vs. Solr

- SolrCloud is by far the most problematic piece of our 
infrastructure
- Scaling, shards, replicas, nodes
- Upgrading in lockstep without downtime
- Backup and Restore
- Disaster Recovery
- $$$

6



Separate Public & Staff Tools
• Break out a public-facing tool that focuses on 

the needs and habits of patrons
• Ingest & Admin tasks shouldn’t drain resources 

from Discovery & Access
• Staff & End Users don’t keep the same 

schedules
- upgrading one tool shouldn’t impede the other

7



Twelve Factor Methodology
In the modern era, software is commonly delivered as a service: called web apps, or software-as-a-service. The 
twelve-factor app is a methodology for building software-as-a-service apps that:

• Use declarative formats for setup automation, to minimize time and cost for new developers joining the project;
• Have a clean contract with the underlying operating system, offering maximum portability between execution 

environments;
• Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems 

administration;
• Minimize divergence between development and production, enabling continuous deployment for maximum 

agility;
• And can scale up without significant changes to tooling, architecture, or development practices.

The twelve-factor methodology can be applied to apps written in any programming language, and which use any 
combination of backing services (database, queue, memory cache, etc).

Source: https://12factor.net/

8

https://12factor.net/


The App Runs Everywhere and Nowhere

• Don’t assume tasks share disk storage
• In fact, don’t assume disk storage
• URLs, not Pathnames
• Move data as little as possible
• Retrieve only what’s needed
• Environment config > File-based config
• Don’t let scaling and concurrency be an afterthought

9



Other Concerns
• Scalability: Spawn Fast, Die Fast
• Expect the Unexpected

- Unpredictable instance lifecycles
- Duplication of messages
- Timeouts

10



Minimize Developer Pain
• Docker (and Docker Compose) to the rescue!
• devstack app with configured containers for:

- Fedora
- SolrCloud
- ElasticSearch (AWS!)
- ElasticProxy
- IIIF (node-express wrapper for our Lambda)
- S3 (Minio)
- ElastiCache (Redis)
- SQS (ElasticMQ Wrapper)

11



Last But Not Least: People
• Thinking “cloud-first” probably involves a significant 

culture shift
• Don’t have a single “cloud guru”
• Try to get everyone to be The Expert at something
• Get everyone outside their comfort zone

- Yes, even when it makes things take longer

• Different Modalities: Training, Sharing, Reading, Doing

12



13



Thank you!
Michael B. Klein
michael.klein@northwestern.edu

David Schober
david.schober@northwestern.edu

Adam Arling
adam.arling@northwestern.edu

Brendan Quinn
Brendan-Quinn@northwestern.edu

Karen Shaw
karen.didrickson@northwestern.edu

NUL GitHub Repo
https://github.com/nulib/

14

Forest Path with light shining through. Photo by Peter Heeling. Public Domain. From https://www.goodfreephotos.com/
Owlbear © 2019 Wizards of the Coast LLC. https://www.dndbeyond.com/monsters/owlbear

mailto:michael.klein@northwestern.edu
mailto:david.schober@northwestern.edu
mailto:adam.arling@northwestern.edu
mailto:Brendan-Quinn@northwestern.edu
mailto:karen.didrickson@northwestern.edu
https://github.com/nulib/
https://www.goodfreephotos.com/
https://www.dndbeyond.com/monsters/owlbear



