
Mono: The Kissing Repository
Project Surfliner’s Monorepo Strategy

Matt Critchlow, UC San Diego
Tamsin Johnson, UC Santa Barbara

Samvera Connect 2020

What is Project Surfliner?

Surfliner Applications

StarlightShoreline

GeoBlacklight Spotlight Valkyrie

Lark

Blacklight Blacklight

Development Methodology

• Follow 12-factor methodology
• Example: Environment variables for shared deployment

• Agile
• Combined daily stand-up

• Two week sprints

• Retrospectives

• Code Review

• Pair Programming

https://12factor.net/

One (git) Repository
To Rule Them All

Mono Repo

One version control repository

shared by all Surfliner products.

Flexible Code Boundaries

• Atomic changes cross-product

• Lock-step releases

Flexible Team Boundaries

• Shared build/test/deploy pipeline

• Global code style and quality standards

• Easy integration testing

Pain Points
Where does it hurt? Where are we growing?

Relearning Dependencies

• Extracting shared services is different than we’re

used to.
• More like working with an inlined dependency than a gem;

poly-inlined.

• We can (but mostly don’t) release packages like

Gems.

Pipeline Maintenance: Sequential

Pipeline Maintenance: DAG

Impact on Outside Collaborators

• The project looks BIG.
• Multiple layers of READMEs to get to a given product.

• Other documentation has high surface area.

• Developing on one application requires checking them all

out.

• What if I want to fork the repo?
• Running the pipelines and contributing MRs is hard; maybe

prohibitively so.

• Permanently forking one application would be a major pain.

• (maybe this is a feature)

Questions & Discussion

Our Way Forward

bit.ly/surfliner-forward

http://bit.ly/surfliner-forward
http://bit.ly/surfliner-forward

Continuous Integration

• Gitlab CI/CD Pipelines
• Build, Code Quality, Dependency Scanning, Lint, Test, Deploy

• Docker image(s) per application
• Lark API, Lark Frontend

• Starlight

• Shoreline

• Gitlab Image Registry

Continuous Delivery

• Cloud-native infrastructure
• Docker, Kubernetes (k8s), Helm

• Auto-deploy across environments & campuses
• Automated review deployments per merge request

• Automated staging deployments on merge to mainline

• Push-button production deployment

• Helm + k8s + 12-Factor means:
• Deployments are repeatable

• Applications are observable and scalable

• Rollback is simple

