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What is Project Surfliner?



Surfliner Applications

StarlightShoreline

GeoBlacklight Spotlight Valkyrie

Lark

Blacklight Blacklight



Development Methodology

• Follow 12-factor methodology
• Example: Environment variables for shared deployment

• Agile 
• Combined daily stand-up

• Two week sprints

• Retrospectives

• Code Review

• Pair Programming

https://12factor.net/


One (git) Repository 
To Rule Them All



Mono Repo

One version control repository 

shared by all Surfliner products. 



Flexible Code Boundaries

• Atomic changes cross-product

• Lock-step releases



Flexible Team Boundaries

• Shared build/test/deploy pipeline

• Global code style and quality standards

• Easy integration testing



Pain Points
Where does it hurt? Where are we growing?



Relearning Dependencies

• Extracting shared services is different than we’re 

used to.
• More like working with an inlined dependency than a gem; 

poly-inlined.

• We can (but mostly don’t) release packages like 

Gems.



Pipeline Maintenance: Sequential



Pipeline Maintenance: DAG





Impact on Outside Collaborators

• The project looks BIG.
• Multiple layers of READMEs to get to a given product.

• Other documentation has high surface area.

• Developing on one application requires checking them all 

out.

• What if I want to fork the repo?
• Running the pipelines and contributing MRs is hard; maybe 

prohibitively so.

• Permanently forking one application would be a major pain.

• (maybe this is a feature)                                                                                                    



Questions & Discussion



Our Way Forward

bit.ly/surfliner-forward

http://bit.ly/surfliner-forward
http://bit.ly/surfliner-forward




Continuous Integration

• Gitlab CI/CD Pipelines
• Build, Code Quality, Dependency Scanning, Lint, Test, Deploy

• Docker image(s) per application
• Lark API, Lark Frontend

• Starlight

• Shoreline

• Gitlab Image Registry



Continuous Delivery

• Cloud-native infrastructure
• Docker, Kubernetes (k8s), Helm

• Auto-deploy across environments & campuses 
• Automated review deployments per merge request

• Automated staging deployments on merge to mainline

• Push-button production deployment

• Helm + k8s + 12-Factor means:
• Deployments are repeatable

• Applications are observable and scalable 

• Rollback is simple


