
Responsible and Sustainable Overrides in
Ruby and Samvera in General
My Presentation for Samvera Connect 2022

Jeremy Friesen

[2022-10-18 Tue 10:34]

Contents

1 Metadata 2

2 Abstract 2

3 Starting with some Marginalia 2

4 First, What do I Mean by Override? 3
4.1 Overrides in Tension with Community 3
4.2 Consequence of Overriding 3
4.3 Lest We Forget . 4
4.4 Background and Guidance . 4

5 Approach 5
5.1 Assessment . 6

5.1.1 Configurations . 6
5.1.2 Class Methods . 8
5.1.3 Other Sundry Items 11

5.2 Containment . 12
5.2.1 Views . 12
5.2.2 Not Views . 13

5.3 Document . 15
5.3.1 Override Procedure and Policy 16
5.3.2 Sharing is Caring . 17
5.3.3 The Goal is to Go Together 18

6 Conclusion 19

1

7 About Me 19

8 Licensing 20

1 Metadata

Presentation Title Responsible and Sustainable Overrides in Ruby and
Samvera in General

Name Jeremy Friesen

Pronouns he/him/his

Job Title Senior Lead Software Engineer

Organization Software Services by Scientist.com (aka SoftServ)

Conference Samvera Connect 2022

Date October 25, 2022 (2022-10-25)

2 Abstract

The Samvera stack is deep; and we often need to make local-
ized adjustment(s) to address either an underlying bug or to
extend existing behavior. The code-base has places for config-
uration, but sometimes that might not be enough. Join me on a
foray into how you can make the Ruby/Rails changes you need
now and not make things (too much worse) for your future self
and others.

3 Starting with some Marginalia

I started preparing for this presentation by writing a reference repository
on Github: jeremyf/responsible_overrides to demonstrate some override
strategies.

But I got ahead of myself.
For this presentation, we won’t look there. Instead we’re going to take

a slightly different approach, that would could lead to that aforementioned
code-base.

We’ll draw up some blueprints and prepare a foundation, if you will.

2

20221011T084521--software-services-by-scientistcom__softserv_abbr.org
20221009T115442--github.org
https://github.com/jeremyf/responsible_overrides

4 First, What do I Mean by Override?

Typically this is re-opening the upstream class/object and replacing/adding/removing
functional logic in your local instance.

It can also be copying and amending the file into the same relative load
path location and letting Rails pick this new file.

4.1 Overrides in Tension with Community

Using overrides is a natural extension of our oft invoked aphorism:

If you want to go fast, go alone. If you want to go far, go to-
gether.

4.2 Consequence of Overriding

When we override something, we are deviating from the anticipated path
and are now forging ahead on our own.

In that moment, we are choosing to go fast-er. But also alone-er.

Attribution: No machine-readable author provided. Nchele~commonswiki
assumed (based on copyright claims)., CC BY-SA 4.0, via Wikimedia Com-
mons

3

4.3 Lest We Forget

I want to offer Milan Kundera’s observation from Slowness:

There is a secret bond between slowness and memory, between
speed and forgetting.

Attribution: The Tortoise and the Hare from Project Gutenberg

4.4 Background and Guidance

In this talk, I want to provide some background and guidance for our over-
ride journey.

To help us enter into memory and conversation on both process and
approach.

4

https://commons.wikimedia.org/wiki/File:The_Tortoise_and_the_Hare_-_Project_Gutenberg_etext_19993.jpg

Attribution: Yale University Press, Public domain, via Wikimedia Com-
mons

5 Approach

Let’s walk through a responsible approach for doing so:

1. First, assess your available options.

2. Second, work to contain the changes you’ll be making.

3. Third, document what you’ve done.

5

Attribution: Unknown authorUnknown author, Public domain, via
Wikimedia Commons

5.1 Assessment

Before you begin the copy/paste journey, look for places in the code where
upstream developers might have created creases for customization:

• Configurations

• Class variables

• Other sundry items

Attribution: Peter Trimming from Croydon, England, CC BY 2.0, via
Wikimedia Commons

5.1.1 Configurations

Look to the configuration file(s). Take some time to orient to what all the
developers have indicated is configurable; and even encourage you to con-
figure.

6

Attribution: NASA, Public domain, via Wikimedia Commons

1. Hyrax::Configuration

Below is code that I recently added to Hyrax::Configuration:

class Hyrax::Configuration
attr_writer :derivative_services
The registered candidate derivative services. In the
array, the first ‘valid?‘ candidate will handle the
derivative generation.
#
@return [Array] of objects that conform to
Hyrax::DerivativeService interface.
@see Hyrax::DerivativeService
def derivative_services

@derivative_services ||= [
Hyrax::FileSetDerivativesService

]
end

end

Note: For presentation purposes I have made changes to the code
formatting.

2. Hyrax::Configuration Continued

In your application’s initializers you can add either of the following:

The first example will replace the existing derivative_services.

7

https://github.com/samvera/hyrax/blob/bd2bcffc33e183904be2c175367648815f25bc2b/lib/hyrax/configuration.rb

Hyrax.config.derivative_services = [
MyDerivativeService

]

The next example will prepend the new service to the array of exist-
ing services.

Hyrax.config.derivative_services
.unshift(MyDerivativeService)

Note: I chose the above code because it helps lead to the second point of
assessment.

5.1.2 Class Methods

Throughout Hyrax you might find class_attribute or mattr_accessor
calls. These are potential points of configuration.

These are “advanced configuration” options.

Image: Le bal paré; Ausschnitt aus Stich von Antoine Jean Duclos, 1774

1. Hyrax::DerivativeService Revisited: Part 1

Let’s delve a bit deeper into Hyrax::DerivativeService class; as of
October 18, 2022 (2022-10-18) on the main branch.

8

https://commons.wikimedia.org/wiki/File:Le_bal_par%C3%A9.jpg

class Hyrax::DerivativeService
@deprecated favor Hyrax.config.derivative_services=
def self.services=(services)

Deprecation.warn(
"Hyrax::DerivativeService.services= is deprecated; " \

"favor Hyrax.config.derivative_servies="
)
Hyrax.config.derivative_services = Array(services)

end

@deprecated favor Hyrax.config.derivative_services
def self.services

Deprecation.warn(
"Hyrax::DerivativeService.services is deprecated; " \

"favor Hyrax.config.derivative_servies"
)
Hyrax.config.derivative_services

end
end

Continued on next page. . .

2. Hyrax::DerivativeService Revisited: Part 2

. . . Continued from previous page

class Hyrax::DerivativeService
@api public
#
Get the first valid registered service for the given
file_set.
#
@param file_set [#uri, #file_set]
@return [#cleanup_derivatives, #create_derivatives]
def self.for(file_set, services: Hyrax.config.derivative_services)

services.map do |service|
service.new(file_set)

end.find(&:valid?) || new(file_set)
end

end

9

The above code allows you to configure the Hyrax::DerivativeService
via class attribute overrides.

You can use either Hyrax.config.derivatives or the deprecated
Hyrax::DerivativeService.services=.

3. Presently Released Hyrax::DerivativeService Code

I chose the above because up until recently Hyrax::DerivativeService
looked looked like this:

class Hyrax::DerivativeService
class_attribute :services
self.services = [Hyrax::FileSetDerivativesService]
def self.for(file_set)

services.map do |service|
service.new(file_set)

end.find(&:valid?) || new(file_set)
end

end

In the released code there is no configuration option. Instead the
“config” option was tucked away.

The samvera-labs/newspaper_works gem makes use of this point of
configuration.

4. How to Override the Class Attribute

To configure the released version, I made the following changes in
my application’s config.

config.to_prepare do
See https://gitlab.com/notch8/adventist-dl/-/issues/147
#
By default plain text files are not processed for text
extraction. In adding
Adventist::TextFileTextExtractionService to the
beginning of the services array we are enabling text
extraction from plain text files.
Hyrax::DerivativeService.services

.unshift(Adventist::TextFileTextExtractionService)
end

10

https://github.com/samvera/hyrax/blob/bd2bcffc33e183904be2c175367648815f25bc2b/app/services/hyrax/derivative_service.rb
https://github.com/samvera/hyrax/blob/afdda8240494ed382301f7d0ab0fd7bafe79185e/app/services/hyrax/derivative_service.rb#L3-L8
https://github.com/samvera/hyrax/blob/afdda8240494ed382301f7d0ab0fd7bafe79185e/app/services/hyrax/derivative_service.rb#L3-L8
https://github.com/samvera-labs/newspaper_works

5. Other Examples of Class Attributes

If you’ve worked in Samvera you’ve probably seen other instances:

• Hyrax’s myriad of *_presenter, *_builder_class, etc.

• Blacklight::SearchBuilder.default_processor_chain

• Blacklight::Rendering::Pipeline.operations

Consider making class adjustments in your config/application.rb
or in the gem specific initializer.

Attribution: jimmyweee, CC BY 2.0, via Wikimedia Commons

5.1.3 Other Sundry Items

As one might expect there are many ways to make changes. Hyrax has
several places I’ll touch on but warrant their own review:

Hyrax::CurationConcern want to alter the Actor Stack? This is your file for
guidance on how to do that. Altering can mean removing, adding, or
shuffling the order of the actors.

Hyrax::Transactions::Container the successor to the Actor Stack; this de-
fines what all “happens” when we perform a transaction in Hyrax.
And it’s configurable.

Hyrax::Publisher here is where you can find documentation on the “application-
wide publisher for Hyrax’s Pub/Sub interface.”

11

20221009T120341--samvera.org
https://github.com/projectblacklight/blacklight/blob/8d32422f8b2834db93febae5fbad137cffc147b3/lib/blacklight/search_builder.rb#L9
https://github.com/projectblacklight/blacklight/blob/8d32422f8b2834db93febae5fbad137cffc147b3/app/presenters/blacklight/rendering/pipeline.rb#L9
https://github.com/samvera/hyrax/blob/bd2bcffc33e183904be2c175367648815f25bc2b/app/services/hyrax/curation_concern.rb
https://github.com/samvera/hyrax/blob/bd2bcffc33e183904be2c175367648815f25bc2b/lib/hyrax/transactions/container.rb
https://github.com/samvera/hyrax/blob/bd2bcffc33e183904be2c175367648815f25bc2b/lib/hyrax/publisher.rb

5.2 Containment

Now that we’ve equipped ourselves to perform an assessment; let’s talk
about containment.

1. No Crease to Be Found

Let’s assume you don’t find a suitable crease in the code and need to
do something more drastic.

Let’s break this into two categories:

• Views

• Not Views

2. Quick Explanation of Ruby’s Load Path

In Ruby and Rails, we have a $LOAD_PATH array. It contains a list of
directories. When we call require, we test for the given parameter’s
existence in each of the directories.

5.2.1 Views

If you need to make changes to a view:
Copy those views and paste them into the same relative directory struc-

ture in your application.

12

Warning: Any changes in the upstream file will not show up in your
application; this can create some notable breaks as you maintain your ap-
plication and others maintain that upstream dependency.

5.2.2 Not Views

You have two primary options:

Copy the file Similar to the view pathway, and one that I don’t recom-
mend. Because there are more durable/robust mechanisms.

Prepend a module I go through those patterns in github.com/jeremyf/responsible_overrides.
The tl;dr is to leverage Module.prepend or Module.class_eval.

1. Minimize the Code You Change

Measure twice, cut once.

When you use the Module.prepend, work to change the least amount
of code as possible; all code you copy or adjust is a fork in the road
and you’re taking a different pathway than others.

Attribution: Georgia National Guard from United States, CC BY 2.0,
via Wikimedia Commons

2. Think of Others

13

https://github.com/jeremyf/responsible_overrides

Consider what you are changing; it is likely others elsewhere may
also want this.

Write and refactor accordingly.

3. Reduce Surprises in Your Code

Follow a consistent pattern for indicating those changes in your code-
base. Ask yourself, “How will others know about this change?”

4. Consider Logical Groupings

When you need to override several files for a singular concept, con-
sider placing those modifications in a single file.

Let folks know how these relate; both in documentation and in file
organization; itself a documentation strategy.

14

Attribution: Michal Klajban, CC BY-SA 4.0, via Wikimedia Commons

5.3 Document

Which leads to documentation. You have several things to consider:

• Your local application and it’s maintainers.

• Other adopters that may be interested in your approach.

• Tracking drift between your local application and it’s upstream(s).

15

Attribution: Nachoom Assis, CC BY-SA 3.0, via Wikimedia Commons

5.3.1 Override Procedure and Policy

I encourage you (and your team) to document how you document these
kinds of overrides; write a policy or procedure if you will.

At Software Services by Scientist.com our overrides go in files with the
suffix of _decorator.rb.

We document that in How To: Override a method from a dependency
without copying the entire file over.

1. Consider Your’s and Our’s Future Selves

In your overrides consider how you might use:

• file names

• method names

• documentation

• inline comments

• commit messages

• logging

All in service of helping future code spelunkers know both the how
and why of the change.

16

20221011T084521--software-services-by-scientistcom__softserv_abbr.org
https://playbook-staging.notch8.com/en/dev/override-a-method-without-copying-entire-file
https://playbook-staging.notch8.com/en/dev/override-a-method-without-copying-entire-file

5.3.2 Sharing is Caring

Share the how and why of your changes:

• File issues in the upstream repository.

• Link to pull requests to provide hints of approach.

• Create a fork of your changes

• Submit a pull request to the upstream.

• Hop on the Samvera Tech call and talk about the change.

• Present on it, email the Samvera Tech list, jump on Slack.

17

https://samvera.atlassian.net/wiki/spaces/samvera/pages/405211059/Notes+from+Tech+Meetings+and+Calls

5.3.3 The Goal is to Go Together

Share this information because you will likely find common cause amongst
folks; or learn of an alternate approach that doesn’t necessitate as much
code drift.

The goal is to make it easy to stumble upon the fact that you’ve made
a local change and to understand the implications of those changes.

18

6 Conclusion

To reiterate:

• Assess where to make the change.

• Work to contain the impact of the change.

• And document why and how you made the change.

This is all in service of others:

• Our patrons

• Our future selves

• Our current colleagues

• Our future colleagues

Let’s help each other cope with the antics of today and yesterday.

7 About Me

Jeremy Friesen (he/him/his)

19

Senior Lead Software Engineer at Software Services by Scientist.com
Email: jeremy@jeremyfriesen.com Website: https://takeonrules.com
From November 2021 to February 2022, we fostered 4 puppies and

their mom, through Clancy’s Dream, a Border Collie Rescue program. We
adopted Queen Anne’s Lace “Lacey” Lulu Bunny Belle. The other larger
dog is our 8 year old Owlbear “Ollie” Camus.

Through Clancy’s Dream, Orlando, Mookie, and Gambit are all adopted
and living wonderful lives in Illinois and Indiana.

8 Licensing

Responsible and Sustainable Overrides in Ruby and Samvera in General by
Jeremy Friesen is licensed under a Creative Commons Attribution 4.0 In-
ternational License.

20

https://scientist.com
https://takeonrules.com
http://creativecommons.org/licenses/
http://creativecommons.org/licenses/

	Metadata
	Abstract
	Starting with some Marginalia
	First, What do I Mean by Override?
	Overrides in Tension with Community
	Consequence of Overriding
	Lest We Forget
	Background and Guidance

	Approach
	Assessment
	Configurations
	Class Methods
	Other Sundry Items

	Containment
	Views
	Not Views

	Document
	Override Procedure and Policy
	Sharing is Caring
	The Goal is to Go Together

	Conclusion
	About Me
	Licensing

